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INTRODUCTION

Metal matrix composites reinforced with ceramic fibers have high strength and

stiffness to density ratios and are attractive for many applications where weight is a

concern. They are also expected to have good high temperature strength. Advantage can be

taken of the dissimilar properties of fiber and matrix to create composites with superior

properties: for example ceramic fibers provide high temperature strength and a ductile metal

matrix provides energy dissipation. However, ceramics have a low coefficient of thermal

expansion (CTE) and metals have a high CTE. The mismatch in CTE induces thermal

stresses in the composite when subjected to temperature change. Time variations of

temperature can reduce the fatigue life of metal matrix composite significantly [1]. Brittle

intermetallic matrix materials, that are attractive because of low density, could crack during

the fabrication of the composite at cool down after consolidation [2]. Such cracks could

impair the performance of the composite dramatically.

Such problems have focused interest on the feasibility of using coatings on the fibers

that would shield the matrix from the loading caused by the stiff fibers when the composite

is subjected to a temperature change. Numerical parametric studies have been performed for

continuous fiber reinforced composites by using concentric cylinder models [3] and by

assuming the fibers are arranged in a square arrays [4]. The studies suggest that the layer

should have a very low modulus and a CTE that is the average of the CTE's of the matrix

and fiber in order to reduce the residual stresses in the matrix. However, the conclusions are

based on limited numerical results and do not provide an understanding of the fundamental

problem. It appears that the formulation of a simple model which includes all the essential

features of the problem and can yield insight into the physics of the problem has been

overlooked. The results of such a model are not expected to be exact but provide guidelines

on where to focus the subsequent numerical studies.



A simple model is formulated for a continuous fiber reinforced metal matrix

compositewith an interface layer when subjectedto temperaturechange.The essential

propertiesof an interface layer that could reduce the residual stressesin the matrix are

identified. The possibility of improving thelow cycle fatigue propertiesof the compositeis

also addressed.

MODEL

The compositeconsistsof long aligned fibers with a thin interface layer in a metal

matrix. The thermal loading of the composite is axi-symmetric with respect to the fibers

and does not stimulate interaction between fibers in the transverse plane. The mechanical

behavior of the composite may then be assumed to be given by a concentric cylinder model,

Fig. 1. The composite is not subjected to transverse loading and the outer surface of the

compound cylinder is traction free. The fibers are long and the stress and strain distributions

are constant in the z-direction except at the end regions which are not studied here.

Ceramic fibers are usually four to five times stiffer than metal matrix materials. Hence it is

assumed, in order to simplify the calculations, that

Ef

E---- >> 1
m

(1)

and

Ef

_//>> 1
(2)

where the subscript f denotes fiber, m matrix, and I interface layer. The fiber volume

fraction, cf, is assumed to be of the same order as the matrix volume fraction so that



(3)

The radii defining the cylinder model (Fig.l) are related to the fiber volume fraction by the

relation

[a/b] 2 = cf (4)

The cylinder is assumed to be stress free at a given temperature T 1

subjected to a homogeneous temperature change to a lower temperature

temperature change is defined as

and is then

T 2 . The

AT = T 1 - T 2 (5)

For the given assumptions the stiff fiber controls the thermal expansion in the axial

direction of the cylinder model. Hence, the stress distribution in the matrix and interface

layer is governed by a plane strain problem with a fixed inner radius at the fiber interface.

The problem is formulated in terms of the differential CI'E's of matrix and fiber

A0cm = 0_m - o_f (6a)

and of interface layer and fiber

ACtI = ct I -- czf (6b)

The stress distribution in the matrix is given by the plane strain solution for a thick

walled cylinder subjected to an unknown internal pressttre p, a traction free outer surface,



and a temperaturechange AT. Superimposing the solutions given in [5] for an internal

pressure and a temperature change gives the stress distributions in the matrix

o =-P [b/r] 2- 1 (7a)

rm [b/a] 2- 1

[b/r]2+ 1

°q)m = P [b/a]2- 1
(7b)

U
ZITI

=p

2 v
m

[b/a] 2_
+ EmAamAT

1
(7c)

The hoop strain is

1 -v 2 v

m [[b/r]2+ 1 + m {[b/r]2_ 1 }]
etPm= re[b/a]2- 1 1 - v m

- [1 + Vm]ACtmAT (8)

The interface layer is assumed to be sufficiently thin for the variation of stress in the

radial direction to be neglected. Because of the rigidity of the fiber the deformation of the

layer is suppressed in the hoop and axial direction by the fiber so that

egl = 8zl = 0 (9a,b)

The layer is subjected to a pressure in the radial direction resulting from the contact with

the matrix
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Orl = -p (lOa)

The temperature change AT introduces stresses in the hoop and longitudinal directions due

to the constraint from the fibers (9). The stresses in the hoop and longitudinal direction are

equal and are the sum of the stresses caused by the pressure and the thermal expansion

Vl 1

%,= -r- l p+ Eta' t (10b,c)

The stresses in the layer give rise to the radial strain

er/=_[l_ 2[ v 2] 1 + v I (11)

Compatibility in the radial displacement at the boundary between the inner surface

of the matrix and the interface layer at r = a, requires

ecpm a = er lt (12)

The pressure in the radial direction at the layer is now derived by substituting (4)

and (8) in (12) and using (11) to give

t A0t l i +Vl

[1 + Vm] - _ 1 - v l

P = 1 + cf v m t E Vl EmA0tmAT (13)

2[ ] + m[1 - v ] T--cf + 1 -- v m a-E-T-/ -[ -v l



STRESSES IN MATRIX

The highest stresses in the matrix occur at the inner surface of the cylinder, r = a.

The principal stresses are given by (7a-c) by letting r = a and using (4). The v. Mises

effective stress

2 + o_z _ OrOq_ _ OrOz _ otpoz (14)

can be calculated from the principal stresses given in (7) as

ge =[/p cf 12 2 cf
m _l---2--_fj [3/cf + 1 --4Vm(1 - Vm) ] - p EmA0cmaT -I--=--cf2tl - 2Vml+

[EmAamAT]2 ] 1/2 (15)

The stresses in the matrix are readily found by first calculating the interface layer

pressure for a given temperature change AT using (13) and using this value in (7a-c) and

(15) to determine the stresses. The term EmACtmAT enters in all the expressions for stress

and all results can be normalized with respect to this term. The stresses at the inner radius

of the matrix are shown in Fig. 2 as a function of normalized pressure for a fiber volume

fraction cf = 0.4 in a Ti3A1 matrix for which v m = 0.25. It can be seen that pressure at

the interface causes increased tensile stresses in the hoop and axial direction which could

result in matrix cracking, which is initiated from defects at the fiber matrix interface. The

effective stress is a minimum when the interface pressure that is close to zero. Consequently

the pressure should be low in order to have good low cycle fatigue properties of the

composite.
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For anygiven compositea plot similar to Fig. 2 can beproduced.The value of the

critical stressfor matrix cracking, acre, setsan upperlimit for the principal stressesa_pm

' gzm ' and t_rm and defines bounds on the pressure p if matrix failure is to be avoided.

The allowable effective stress, _ym ' in the matrix defines other bounds on the pressure.

These bounds define a window for the interface pressure (Fig 2.) if the failure criteria are

not to be violated. If the calculated pressure does not fall within the allowable window it

must be adjusted to avoid matrix cracking or failure due to high effective stress.

Inspection of (13) reveals that the pressure may be reduced in two ways by the

introduction of interface layers. A compliant layer with low modulus would increase the

denominator in (13) while a comt_nsating layer with a high coefficient of thermal

expansion would decrease the numerator in (13). An appreciation for the potential of the

two effects can be obtained by evaluating the requirements to reduce the pressure by a

factor two. To achieve this condition using a compliant layer means that the two terms in

the denominator of (13) are equal and gives the result,

E
l t

=_(I - vl)(1

vl(l - cf)
+ Vm)[(1- Vm)(1 + cf) + Vm(1 -cf)] (16)

For the present composite, using vI = 0.3, this requires that

El t
E-- = 0.17 _-

m

In general the layer has to be thin in order to keep the density down of the composite, and a

realistic value of t/a is 0.1 . This requires that the modulus of the layer must be

unrealistically low for the pressure to be reduced by a factor two. Hence it is deduced that a

compliant layer is not an efficient way to reduce thermal stresses in the matrix.



Furthermore,the secondterm in the denominator of (13) is usually sufficiently small to be

neglected in the calculations and the pressure is then linearly dependent on the normalized

thermal expansion of the layer, Aa/t/Aama. This is demonstrated in Fig. 3 where it can be

seen that the influence of Emt/E/a is small.

A reduction of the pressure by a factor two with a compensating layer requires that the

second term in the numerator of (13) is equal to half of the first term, to give,

Aal a 1 - v l 1 + v m
w

t'I +Vl 2
(17)

For the present composite this gives the condition

Aa l
= 0.34 at

m

Hence when t/a = 0.1 the differential CTE for the layer is Aa l = 3.4 Aa m . For the case of

SiC fibers (af -- 5 10 ---6 l/C) in a Ti3AI matrix (a m --- 10 10 -'6) requires that a I _- 20 10 --6

if the pressure is to be reduced by a factor two. Handbook values [6] of metals with a

reasonably high melting point and high CTE are: silver 25 10 --6, copper 17 10 --6, and

manganese 22 10 --6 . It is evident therefore that an interface layer of readily available

materials with high CTE has the potential to substantially reduce thermal stresses in the

matrix.

The results given in Fig. 2 and Fig. 3 have been combined in Fig. 4 where the

highest principal stress and effective stress at the inner radius of the matrix cylinder are

plotted against the normalized thermal expansion of the layer. No interface layer

corresponds to Aalt/AOtma = 0. It can be deduced that a layer with a lower CTE than the



matrix will increasethestressesin thematrix and a layer with a higher CTE than the matrix

reduces the stresses in the matrix. The effective and principal stress have minima for

different layer characteristics and the required thermal expansion of the layer, ACXlt, has to

be a compromise as discussed earlier. The highest effective stress in the matrix, (15),

governs the low cycle fatigue performance of the composite when it is subjected to thermal

cycling. Shake down to linear elastic stress strain response is expected when the cyclic

effective stress, based on a linear elastic calculation, is less than twice the yield stress. The

shake down condition is plotted in Fig. 5 as a function of the normalized thermal expansion

of the layer. It can be seen that an interface layer can double the allowable temperature

range for elastic shake down in the matrix.

STRESSES IN INTERFACE LAYER

The tradeoff for the improved stress state in the matrix is that the thermal mismatch

has to be taken up by the interface layer. The deformation of the layer is constrained in the

hoop and longitudinal direction so that tensile stresses develop in these directions. The

highest principal stress in the interface layer which is given by substituting (13) in (10b), is

shown in Fig. 6 as a function of the dimensionless parameters defining the problem. The

stress is strongly dependent on the layer modulus, E//E m , and CTE , Aa//Aa m , but

weakly dependent on the layer thickness t/a. This indicates that the stress is dominated by

the constrained thermal expansion [ given by the second term in (10b)] and is weakly

dependent on the interface pressure [ given by the first term in (10b)]. The product Aalt

governs the reduction of stress in the matrix (Fig. 4) and must have a required value to

reduce the stresses in the matrix to an acceptable level. It can be deduced from Fig. 4 and

Fig. 6 that it is more favorable to have a thick layer and a moderate high layer CTE than a

thin layer and a high layer CTE, to meet the requirements of stress reduction in the matrix

and avoidance of high tensile stresses in the layer.



The effectivestressin the layer is given by inserting (10a-c) in (14) to give

¢_le= -Y_/1 I EIAtX/AT + (1 - 2v/) pl (18)

Shake down to elastic response in the layer is expected when the cyclic part of the

effective stress is less than twice the yield stress of the layer. The shake down limit has

been plotted in a normalized form in Fig. 7 for different layer modulus and thickness. The

stress in the layer is strongly dependent on the layer modulus and to ensure shake down it is

desirable to have a layer with a high yield stress and a low modulus.

THE EFFECT OF YIELDING OF THE INTERFACE LAYER

The previous calculations indicate that the layer can be subjected to high stresses

and may yield. An estimation of how yielding in the layer affects reduction of the stresses

in the matrix can be obtained by examining the behavior of an elastic-perfectly plastic

layer. In the analyses the layer is assumed to be in an initial elastic stress state which

satisfies the yield condition (14). The cylinder is subsequently subjected to a further

temperature change dT so that the radial pressure changes by dp . The loading is such

that the layer remains yielded during the subsequent deformation requiring the effective

stress to be constant. Differentiation of (14) and using the condition at yield, (10b,c), gives

an incremental stress change in the layer which is hydrostatic. Thus, the stress increments

are

dt_zl = datp I = dCrl =-dp (19a,b,c)
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Sincethe total strainsof the layer in the q_ and z directions are constrained to be zero,

(9a,b), it follows that the plastic strains in these directions are the sum of the elastic and

thermal part

1 - 2v 1

d_l = d_P l = - Aot/dT + E1 dp
(20a,b)

The plastic deformation is incompressible requiring

(21)

and the total strain increment in the radial direction is the sum of the elastic, thermal, and

plastic component and becomes

deP1 1 -2Vl 1 -2vl
rl = E l dp + Ao_/dT + dePzl = 3Ao_/dT- 3 El dp (22)

The radial strain in the layer governs stress reduction in the matrix and an appreciation for

the effect of the yielded layer can be determined by comparing the radial strain for an

elastic layer, Eq. (11), with the radial strain for an elasto-plastic layer, Eq. (22). The

contribution from the pressure p in both these equations is small and can be neglected.

The strains are then only linearly dependent on the temperature change. By letting AT =

-dT in Eq. (1 I) the ratio of the two strains is found to be

Pl 3(1dSrl

de req/ 1

- Vl)

+ v l
(22)
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To estimatethe effect of the elasto-plastic deformation, the second term in the numerator

of (13) must be multiplied by the right hand side of (22) when calculating the pressure. For

the present data , with v l = 0.3 , this implies that the thermal expansion of the layer

becomes 1.5 times more effective in reducing the pressure. Hence the results of the elastic

solutions given in Fig. 3-5 can be readily modified to include plastic deformation in the

layer.

CONCLUSIONS

A compliant layer must to be unrealistically flexible to reduce thermal stresses in the

matrix.

A compensating layer with a high coefficient of thermal expansion (not

unrealistically high) has the potential of reducing the thermal stresses in the matrix

significantly.

The hoop stress in the matrix close to the fiber can be reduced substantially but the

axial stress in the matrix is less affected by a layer. This implies that compensating layers

can be expected to be successful in preventing cracking in composites where predominantly

radial cracking is observed in the matrix.

The shake down range to linear elastic response in the matrix can be extended

significantly with the addition of a compensating layer.

The thermal mismatch between fiber and matrix is taken up by the layer which can

cause high stresses in the layer. The required stress reduction in the matrix sets a

requirement on the value of the thermal expansion of the layer, ACtlt. However, the stress

12



in the layer is proportional to Aa I so that a high layer CTE can cause high stress in the

layer. In order to have low stress in the layer it is more favorable to have a moderately high

layer CTE and thick layer than a thin layer with very high layer CTE. A low elastic

modulus of the layer reduces the stresses in the layer. The effect of plastic deformation of

the layer on the stress reduction in the matrix is equivalent to increasing the CTE of the

layer by 1.5.

Thermal stresses build up in the layer because the required thermal expansion in the

radial direction is different from the thermal expansions in the hoop and longitudinal

directions that are governed by the fiber. The stresses in the layer could be minimized if a

layer could be developed with an anisotropie thermal expansion such that the thermal

expansion is close to the fiber CTE in the longitudinal and hoop directions and high in the

radial direction.

Residual stresses can be reduced by Compensating layers for other reinforcements

shapes than fibers. Thermal expansion of reinforcements with lower aspect ratios is less

anisotropic and can be better compensated for by a layer with an isotropic CTE. The thermal

mismatch for a spherical inclusion can be compensated for fully and no residual stresses would

develop in the matrix.
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